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INTRODUCTION

Some of the interesting changes that occur in nature contain
mixtures at high pressures and high temperatures. They may involve
phase changes and chemical reactions with many chemical species. This
particular sub-branch of physics and chemistry has been richly supported
by experimental data, but poorly by first-principles theory.

Fortunately, for simple systems or complex molecular mixtures at high
temperatures, it is possible to develop a reliable statistical mechanical
model based on molecular physics, an accurate theory of fluids, and the
thermodynamic equations governing mulitphase chemical equilibria.

This paper describes such a mixture model. There are other mixture
theories! that are more elaborate than the one described in this paper;
however, they are either impractical to use (for multicomponent systems,
nonspherical forces, many-body forces, etc.) or less accurate at high
pressures. The present model is mostly designed for multicomponent
systems and is useful for high pressure and high temperature applica-
tions. Several recent experimental and theoretical advances aided us in
building the mixture model.

1. Experimental shock wave2.3 and static compression3 data of
many simple molecular species.

2. The availability of the diamond-anvil cell technology for
studying a supercritical fluid-fluid phase separation.?

3. Reproduction of the experimentally measured data by a _priori
statistical mechanical methods.?

4, A theoretical foundation for making a spherical approximation
for nonspherical molecular interactions at high
temperatures.

5. Construction_of a reliable mixture model by using computer
simulations.?

6. Development of a sophisticated computer code to solve complex
multiphase chemical equilibrium problems.8



We will first describe the physical basis and theoretical tools
needed for building the mixture model. We then apply the mixture model
to binary and ternary mixtures, and to more complex mixtures which are
important in understanding the detonation behavior of condensed
explosives and the possible states of a planetary interior.

INTERMOLECULAR POTENTIALS

Quantum Mechanical Potentials

A reliable mixture model must give the equation-of-state (EOS)
properties of each chemical species in the mixture. This in turn
requires information about the intermolecular potential of each chemical
species. The most rigorous way of getting this information is to do
quantum mechanical calculations. Ideally, we could carry out such
calculations for any cluster of molecules, but in practice such
calculations become unwieldy for all but the simple molecules.

The hydrogen molecule, with only two electrons, comes very close to
the ideal simple molecule. The nitrogen with 14 electrons, has much more
complicated electronic interactions. However, in a high-pressure or
high-temperature environment, only the strongest forces must be specified
accurately, and we can tolerate approximations to the weaker forces. We
can obtain a reasonably reliable calculations of the quantum mechanical
potential for nitrogen molecules by using the self-consistent field (SCF)
method. :

Figure 1 compares SCF intermolecular potentials of two H29 and two
N210 molecules at four different molecular orientations. For hydrogen,
each of the orientations gives the same curve (indicating a highly
isotropic nature of the interaction), but for nitrogen, the curves are
far apart. At an intermolecular spacing of 2.9 A (about that of the
highest shock compression achieved in Ref. 12a from an initially
unshocked 1liquid state), the difference in energy between the X and L
geometries (defined in Fig. 1) is about 200 times larger for nitrogen
than for hydrogen.

Spherical Potentials for Like-Pair Interactions

The ab initio quantum mechanical potentials described above are
cumbersome, and we must use simpler potentials (with the same physical
features) for mixture calculations. Fortunately, at high temperatures
molecules can rotate more easily and such orientational ordering as
hydrogen bonding in water can be at least partly broken up. In many
dynamic experiments, the compression is still relatively low and the
temperature is high enough so that the repulsive force appears to be
independent of orientation, even for a highly nonspherical molecule such
as Np. Hence, we need not complicate the expression by explicitly
allowing for nonsphericity. A theoretical justification of the spherical
approximation has been provided by Shaw, Johnson, and Holianbd and
Lebowitz and Percus.6b They showed that the fluid EOS of a system
interacting with a nonspherical potential V(r,wy,w2) can be approxi-
mated by those of a fluid with a spherical potential V(r) equal to the
angular median of V(r,wj,wp).

For a high-pressure and high-temperature application, a spherical
potential must be able to describe three essential characteristics: the
range of interaction, the depth-of-attraction, and the stiffness of the
repulsion. The simplest physically realistic potential which satisfies
the above requirement is an exponential-6 (exp-6) potential,
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Fig. 1. SCF pair potentials at four different geometries of hydrogen
[Tower four curves, Ref. 9] and nitrogen [upper four curves, Ref. 10]
molecules. (1 eV = 11604 K).

v(r) = —i—s (6expla(l - r/r)] - a(r /1%, (1)
where parameters e, r*, and « characterize the depth of the attraction,
the magnitude of the repulsive core, and the slope of the exponential
repulsion. The above choice of the three-parameter potential, rather
than a two-parameter potential, such as the more popular Lennard-Jones
(LJ) potential,

V(r) = 4e[(a/r)12 - (a/r)6], (2)

is reasonable here because both quantum mechanical ab initio calculations
and analyses of experimental data on simple molecular systems have shown
that the intermolecular repulsion must be of an exponential character.

Within a family of exponential potentials, it is convenient to
further classify the potential according to its nature of molecular
interactions:

Class 1: Potentials that obey the corresponding-states law.
Class 2: Potentials that have a strong electrostatic attraction.
Class 3: Potentials in which many-body interactions are important.

Class 1 Potentials. For molecules such as rare gases, 02, N2, CHg,
CO0, and COp, we have found that o = 13 (or a value very close to 13) and
that the parameters ¢ and r* may be fixed by means of the correspond1ng—
states scaling relat1on 5 The correspond1ng states scaling requires that
the parameters r* and « for the species of interest are derjved from the
corresponding parameters ra and €3 of argon and critical volumes V¢
and temperatures T, i.e.

E/Ga = Tc/Tac, (3a)



r*/ry = (V¢/vac)l/3, (3b)

Figure 2 compares experimental shock pressure-density data for
nitrogen and carbon dioxide with our theoretical calculations using the
statistical mechanical theory developed by Ross.!l Our calculated EOS
agree well with experimental data for COp to all pressures and also for
N» to about 40 GPa. At higher pressures the experimental shock pressures
“softens", (indicating the Np fluid becomes easier to compress), possibly
because of the pressure- and temperature-induced dissociation of N»
molecules. Extensive experimental and theoretical work has been done
recently on this subject."z']5

Class 2 Potentials. For molecules (such as Hy0, NH3, and HF) with
a strong tendency to form hydrogen-bonds, the corresponding-states
scaling relation is not applicable. 1In this case we define the «
parameter to be temperature (T) dependent;

e = (1 +/T), (4)

where /T accounts for an effective dipole contribution. At tempera-
tures below ¢ (about 1000 K for water), the dipole term in ¢ dominates
and V(r), at large r, reduces to the Keesom formula, i.e., V(r) = const/
(Trb). We can determine ¢ either by a quantum-mechanical method!®

or by fitting the Hugoniot data.l?

Figure 2 compares experimental Hugoniot data for water with the
corresponding theoretical calculation. The Hugoniot calculated with
temperature-dependent ¢ is in good agreement with the experimental data,
even reproducing the ramped "toe" of the curve at low temperatures,
while the one (dotted 1ine) calculated without ¢/T term does not agree
as well.
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Fig. 2. Comparison of experimental and theoretical Hugoniots of Np, COp,
and Hp0. (References on the experimental data are given in Ref. 37.)



Class 3 Potentials. The type of the nonadditive force, relevant to a
high-pressure condition is not a triple-dipole ("Axilrod-Teller")
interaction which is present at large intermolecular separations, but
the type which occurs at short distances as a direct consequence of the
Pauli principle. The Pauli principle requires the charge cloud of two
molecules to be altered in the presence of a third molecuie. 1In
principle, if sufficiently compressed, the EOS of all materials should
ccntain the many-body effect. In practice, however, the EQS of hydrogen
is most sensitive to the many-body effect.

To demonstrate this, we used the configuration interaction (CI)
calculations for the isosceles geometry of three Ho molecules.18
Figure 3 shows the ratio of the triplet potential to pair potential
energies for Hy molecules. At the intermolecular separation of 3.5 A&,
the triplet contrivutions range from -15% for an equilateral geocmetry to
+2% for a linear geometry. In condensed phases there are many equil-
ateral geometries. Thus, the additivity assumption becomes quite poor
within the repulsive region of the pair potential. It means that all
empirically derived Hy-H, potentials in condensed phases are, in
fact, "effective" pair potentials with a significant many-body
contribution.

In Fig. 4, we compare the ab initio CI and SCF potentials with
several such effective potentials: the Silvera-Goldman (SG),]9 Young-
Ross (YR), and exp-6 potentia]s.20 We note that the YR and exp-6
potentials are nearly identical and softer than the SG potential. The
softening for the former two is required to reproduce the shock wave
data.2! This softness may be accommodated in the exp-6 potential by
reducing « to 11.1 from 13 for the Class 1 case.

There is a simple physical explanation for the large many-body
effect exhibited by the Hy molecules. They have only two electrons,
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Fig. 3. Ratios (%) of the triplet- to-pair potentials for three Hs
molecules with their axes in parallel orientation.
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Fig. 4. The effective and the ab initio pair potentials of Hp molecules
(Ref. 20).

but their size is large. Therefore, the electrons are loosely bound to
nuclei (i.e, easily polarized) and easily change their charge density
when we place the second Hp molecule nearby. This is the cause for an
unusually soft intermolecular repulsion between molecules. Similarly,
the placement of the third Hy molecule alters the charge cloud of a two-
Hy cluster, thereby contiributing to the significant three-body potential.

Table I summarizes the exp-6 parameters for many chemical species
useful for practical calculations. Because of the three-parameter
Timitation of the exp-6 potential, these parameters are sometimes useful
within a limited range of pressure.

Unlike Pair Potentials

Determining intermolecular potentials for like-pair molecules (i=j)
is relatively simple since shock wave data are available for many
chemical species of interest. The problem becomes formidable for
unlike-pair interactions (e.g., Np-H»0), where there are no shock
data and potentials derived from gas-phase data are often not reliable
in condensed phase problems, condensed-phase interactions being affected
by the polaraizability of a molecule in the presence of its neighbors.
Yet we need information on unlike-pair interaction to model mixtures.

In our model we use the following combination rule:

3 o«ijirii + iy, (5a)

x,
€jj = ’-‘ij VW, (5b)

ajj = myjj /m, (5¢)



Table I. Parameters of exponential-6 potentials for chemical species.?

Species e/k (K) r*(R) a I
Ar 122.0 3.85 13. 0
He 10.8 2.9673 13.1 0
Ho 36.4 3.43 11 0
N> 101.9 4.09 13 0
0p 125.0 3.84 13 0
co 108.3 4.12 13 0
Coy 245.6 4.17 13 0
CHq 154.1 4,22 13 0
MO 112.9 3.97 13 0
H,0 356.0 3.06 13 996.8
NH3 474.0 3.44 13 441.0
CoHp 249.4 4.50 13 0
CoHe 246.8 4.86 13 0
CaHg 298.9 5.43 13 0
CH40H 414.6 4.92 13 0
N20 250.1 4.26 13 0
NO7 348.4 4.21 13 0

d parameters for the first eleven species are from Refs 5, 30, and 37.
See references quoted therein for original papers. Parameters for the
remaining species are derived using the corresponding states scaling
relation (Ref. 5).

where «jj, %ij, and mjj are unity (i.e., the Lorentz-Berthelot rule)

for most cases. They can be adjusted to agree with experimental mixture
data if they are available. Typical uncertainties of the Lorentz-
Berthelot rule are about 5%.

ONE-COMPONENT EOS

The mixture model should give accurate EQS data for pure phases of
individual components in the mixture. Also, it should permit rapid
evaluations of thermodynamic properties. There are two such models,
both based on one-component statistical mechanical theories.

We first describe Ross's soft-sphere variational procedure,]1
which is an extension of the hard-sphere variational theories of Mansoori
and Canfield, and Rasaiah and Stell. Briefly, the Helmholtz free energy
A is expressed as the sum of the free energies of different degrees of
freedom,

A=At + A + Ay + Ag + Apg, ‘ (6)

where subscripts t, r, v, and e denote the contributions by the transla-
tional, rotational, vibrational, and electronic degrees of freedom. The
free energies of these degrees of freedom are assumed to be those of an
isolated molecule. The electronic excitation is usually negligible
within the temperature range of 4000 K or lower. The potential energy
contribution Apg is obtained by minimizing the right-hand side of

Apg = Ays + F(n)NKT + (pN/2) [dr V(r)gys(r,n) + Aqm (7)

with respect to the hard-sphere diameter d. This appears in the



"packing" fraction n = 7d3p/6 (p = the number density) in Eq. (7). The
quantities Ays(n) and gys(r,n) represent the hard-sphere excess free
energy and the hard-sphere radial distribution function. The factor
F(n) = —(n%/2 + nl + n/2) makes the computed thermodynamic quantities
agree with the corresponding Monte Carlo data for a different class of
potentials. Aqm is the first order quantum correction in the Wigner-
Kirkwood expansion:

Aqm = (h2pN/96w2mkT) [ dr gys(r,n)vev(r). (8)

The potential V(r) can be either temperature independent or
temperature dependent, as in Eq. (4). The pressure P and internal energy
E are calculated by taking the appropriate numerical derivatives of Eq.
(6). We will exclusively use the above variational theory in later
cecticns of this paper.

We describe next an alternative to the above approach, a
perturbation method,22 which will be equally useful in future
applications. It starts from van der Waals's idea that V(r) may be
broken up into a strong, short-range repulsive reference potential
Vg(r) and the remaining mainly long-range perturbation Vy(r):

V(r) = Vg(r) + Vi(r), (9)
Vo(r) = V(r) - F(r), if r <,

=0, ifr>a, (10)
Vi(r) = F(r), if r<a, _

= v(r), if r> o, (11)

where

F(r) = V(\) - [dV(r)/drlpe= (\-1), (12)
A = vZ/p1/3. _ (13)

Note that Eq. (4) represents the nearest-neighbor distance of a close-
packed fcc or hcp lattice, and that Eqs. (10) and (11) reduce to the
theory of Weeks, Chandler, and Andersen (WCA) if F(r) and X\ are chosen
constant. The perturbation theory expands Apg in a series involving
Vi(r). The final result is given by

Apg = Ays + (pN/2) Jdr Vi(r)gys(r,n), (14)

where n is given by solving for the root of

J dr {exp[-Vg(r)/kT] - exp[-Vys(r)/kT1} exp[Vys(r)/kT] gys(r,n)=0. (15)

Characteristic features of the perturbation theory are: (1) its
ability to handle both fluids and solids and (2) the use of Vg(r) whose
range N shrinks with density. Table IIA shows a comparison of PV/NKT
for an exp-6 potential. Calculating a melting transition provides
another test of the new theory. This is done in Table IIB for a LJ
system. It also reveals an excellent agreement over a wide density and
temperature range.



Table IIA. Comparison of PV/NKT for the exp-6 system at kT/¢ = 20.
PT = the perturbation theory (Ref. 22), Ross = the Ross theory (Ref. 10).

PV/NKT
Fluid Solid
— * -—

p(r )3 /w2 Exact? PT Ross p(r )3 /02 Exact? pT
0.9 3.27 3.21  3.32 2.308 20.28  0.28
1.0 3.81 3.80  3.87 2.76 30.88  0.38
1.25 5.52 5.55  5.68
1.50 8.07 .04  £.19
1.75 1.34  11.37  11.54
2.0 15.55  15.66  15.84
2.05 16.58  16.65  16.80

d Monte Carlo values. See Ref. 22 for their original sources.

Table IIB. Meiting lines of the LJ system obtained by the computer
simulations@ and the perturbation theory (PT) (Ref. 22).

Freezing density Melting density Pressure
(pfad) (psad) (Pad/e)
kT/¢ Exact PT Exact PT Exact PT

0.75 0.875 0.865 0.973 0.958 0.67 0.65
1.35 0.954 0.986 1.053 1.058 9.00 9.60
2.74 1.113 1.144 1.179 1.210 32.2 36.8
5 1.279 1.305 1.349 1.371 86 93
10 1.500 1.526 1.572 1.599 231 247
20 1.765 1.793 1.843 1.874 590 627
50 2.200 2.231 2.291 2.327 1970 2070

d ). -P. Hansen and L. Verlet, Phys. Rev. 184:151 (1969); J.-P. Hansen,
Phys. Rev. A 2:221 (1970).

MIXTURE EOS

The theoretical and experimental work we have discussed up to this
point is a necessary preliminary to the description of mixture EQS. To
calculate anything about mixtures involving many species, we must, in
addition to sphericity and effective pair potentials, employ another
simplifying assumption. We describe below such an approximation for
both two- and three- parameter potentials.

One-Fluid Van der Waals Model

The one-fluid van der Waals (vdWif) model is a widely used mixture
theory that is appropriate for molecules interacting with two-parameter
potentials. It is applicable only if the mixture potential has the form

V(rij) = eijf(r/rij). (16)



In these equations rii and ¢jj denote respectively the range of inter-
action and the depth of attraction for the chemical species i and j. In
the vdW1f model all molecules in the mixture are assumed to be identical
and to interact by an "effective" one-component potential with the same
functional form as the original potential for individual pairs.

For the effective one-component potential, r* and ¢ parameters
are chosen to depend on {xj} in the following manner:

(r 3 = 1 xixj(rin3, (17)
1,3
e = I xixjeij(rijp3d 7 (73, (18)
1,]

where xj is the mole fraction (ni/Zj nj) of chemical species i and
summations extend over all chemical species (with mole numbers {nj})
which are present in a phase of interest. Note that the effective ¢ and
r* parameters are composite or weighted averages specified in terms of
the concentrations. Since in this model every molecule interacts with
the same potential as every other molecule, we can extend the
one-component EOS systems discussed earlier to mixtures.

Henderson and Leonard,23 using computer simulation data for the LJ
mixtures, have shown that the vdWlf model gives excess thermodynamic
properties that are either comparable to or often superior to calcula-
tions based on more elaborate theories. The vdWlf model has been cast
in a rigorous theoretical framework by Smith.24 Henderson and Leonard
have obtained Eqs. (17) and (18), assuming that the the radial distribu-
tion functions of both the mixture and the effective one-component fluid
have the same form, i.e.,

gij(r) = 6(r/riy), (19)
a(r) = 6(r/r"). (20)

The second way of obtaining the vdWlif model is that of MacGowan,
Lebowitz, and Waisman,25 who demand that both the mixture and the vdWlf
model give the same compressibility:

kT(3p/a3P)T = 1 + p_z_xixj [ dr [g945(r) =17 . (21)
1,]

If we substitute Eqs. (19) and (20) into Eq. (21) and equate the two, we
obtain Eq. (18).

The above results and the fact that one-component statistical
mechanical calculations are generally simpler than full mixture
calculations provide a reasonable justification for using the vdWif
model in problems that would be otherwise computationally impractical.Z6

Improved Van der Waals One-Fluid Model

Real molecular interactions are more complex than the expression
employed in the vdWlf model. Thus, the applicable range of the vdWif
model is reduced to a limited density and temperature interval where
major contributions to thermodynamic properties come from that portion
of the potential approximated by the two-parameter form. This limita-
tion makes the vdWif model less useful in problems involving extreme
temperatures and pressures. For example, a computation of detonation
properties of condensed explosives and a prediction of the interior

10



compositions of Jupiter and Saturn require a consideration of tempera-

tures to 5000-10000 K and pressures to 50-200 GPa. Here a large range
of the intermolecular repulsion r* and, therefore, stiffness « play

a dominant role. Unlike the vdWlf assumption, however, the stiffness of
the repulsion varies from species to species. Thus, it is necessary to

derive a proper formula for the o« parameter that is analogous to r*

and ¢ in Eqs. (17) and (18).

In order to develop such a formula, we first carried out two-
component Monte Carlo calculations for Hp-He mixtures using exp-6
potentials for individual pairs.’ Next, these results are compared
against similar Monte Carlo calculations for several effective one-
component systems to find out which of these systems can best approximate
the two-component svstem. In these tests we kept the same r* and ¢ of
the one-component systems in Egs. (17; and (18) but varied o by expras-
sing them as a sum of products of aqj 's, rij's. ejj'S, and xj's; for
example,

a =_Z_x1Xja1j<1j(r$j)3 / e(r)3, (22)
1,]

@ = I XjXjaij. (23)
1,]

a =} XjXjajjeij / e, (24)
1,3

In Table III we compare the resulting pressure data with the corre-
sponding two-component results for 108 Hp molecules and 108 He atoms.
We note that, compared to Eqs. (23) and (24), Eq. (22) gives clearly
superior results. Differences between the results based on Eq. (22) and
the two-component results are 2.3% in P and 1.25 % for the excess energy.
Table IV compares the results from Eq. (22) with the two-component calcu-
lations over a wider range of T and V for an equimolar mixture. We note
that the agreement is nearly perfect within the pressure range below 3
GPa, falling slightly (1%-3%) balow the two-component results at higher
T (> 1000 K). These differences are slightly larger than statistical
errors in the Monte Carlo data. Errors of this magnitude are also
present in the conventional vdWlf model. Therefore, the improved vdWlf
model probably comes close to an optimum form.

Recently, MacGowan et al.25 gave another expression for a,

a = I xixjaijlaij=6)(ajj=Deij(rij)3 / «(r*)3(a-6)(a-7). (25)
i3

The above formula is obtained by using the first two non-vanishing terms
in the Taylor expansion of V(r1 ) about r1J in the energy equation and
by demanding that both the m1xture and effective one- component results
give the same energy. They showed that, since the ajj's, in practice,
are all in the range 11-14, both Egs. (22) and (25) give similar results.

It is known that the conventional vdWlf model becomes less reliable
if mixture particles have substantial]y different repu]sﬁve cores. The
s1ze of the repulsive cores in the improved vdWlf model is determined by
r* and «. In this respect, it is worth noting that the Hp-Hy and He-He
potentials used in Table IV differ substantially not only in the
st1ffness a but also in the range and magn1tude of the interactions,

.e., Ho/€HeHe = 3.45 and (TH,H /rHeHe) = 1.6. The H2-HZ2 repuls1on
desp1te ?tg longer range (r ), g %uch softer than the He-He repulsion.
This probably contributed to the good agreement obtained in Table IV.
From these calculations, we can conclude that Eq. (22) for «, coupled

11



Table III. A Monte Carlo test of three effective one-component «'s
against the two- component data for an equimolar mixture of Hp and He
at 4000 K and 8 cm3/mole (Ref. 7).2

Pressure Energy
Formula (GPa) (kd/mol) a
Two-component 12.43 25.12 - - -
Eq. (22) 12.43 25.12 11.983
Eq. (23) 12.15 24.82 15.525
Eq. (24) 13.59 26.98 11.487

€ The Hp-Hp, He-He and Hp-He exp-6 carameters: (r ., e/K, ) = (3.45 B,
36.4 K, 11.1), (2.97 &, 10.57 K, 13.6), and (3.37 A, 15.5 K, 12.7),
respectively.

Table IV. The Monte Carlo pressure of an equimolar Hp-He mixture.d
(Ref. 7)

Pressure (GPa)

T .
(K) (cm3/mol) Two-Component One-Component
50 20 0.047 0.048
100 14 0.034 0.034
300 10 1.86 1.86
1000 9 4.5] 4.42
4000 8 12.43 12.75
70C0 4.5 54.01 52.53

4 See footnote a in Table III for the exp-6 parameters used here.

with the usual vdWif model, should be used to compute thermodynamic
properties at high pressures, where it is physically less appropriate to
use the conventional model.

Quantum Correction for The Effective One-Component Model

To accommodate the quantum correction Aqm [(Eq. (8)] within the
framework of the effective one-component model, we need a proper
effective one-component mass m that is analogous to r, €, and o
described earlier. It is possible to derive such an expression bg
following the dimensional analysis used by Henderson and Leonard. 3
The resulting expression¢’ is

1/m =3 (1/mj)xixjeijrij / er”. (26)
J
We have computed Aqn, qu, and Eqm by the Monte Carlo method
using the relations derived by Barker et al.28 Table V summarizes the
calculations performed for both the two- component mixtures (216 Hp

molecules and He atoms) and the effective one-component mixtures
[obeying Egs. (17), (18), (22), and (26)] at three different Hy:He



ratios. The classical and quantum corrections to P and E are separately
listed to indicate their relative sizes. The two- and one-component
results show that the deviations between the two are small, Tlying either
close to or within statistical errors. This result further substantiates
the reliability of the effective one-component formulas for e, r*,

a, and m. Theoretical results in Table V refer to the results based

onh Ross's theory. They are similarly encouraging. They give the
pressures which lie (<3-5%) above the Monte Carlo results. Aqreement

in E is generally better.

BINARY AND TERNARY MIXTURES - SUPERCRITICAL PHASE SEPARATION

Using the theoretical tools described above, we are in a position to
compute (P,T,{xq}) bcundaries of a phase separation. Ffor this
purpose, we use the Gibbs free energy G(P,T,{x;}) rather than the
Helmholtz free energy A.

For many pure components (x = 1 or 0), their exp-6 parameters are
reasonably well known. (See Table I.) 1In principle, it is possible to
determine the unlike-molecular interactions by matching a theoretical
solubility boundary to experimental data. We will consider:

(1) Binary nonpolar molecular mixtures
(2) Binary monatomic mixtures

(3) Binary mixtures with polar molecules
(4) Ternary mixtures

Data on fluid phase separations are available for (1) - (3) in the
pressure range up to 1 to 8 GPa. The systems of interest are: Hp-He and
No-COp for (1); He-Xe for (2); Hp0-Np, Hp0-COp and Np-COp for (3);
and Np-C0,-H70 mixtures for (4).

Table V. Pressure P_and excess internal energy E/NKT of Hp-He mixtures
at 61.5 K and 15 cm3/mole.d The classical and quantum mechanical
contributions are separately Jisted. (Ref. 7)

P(MPa) E/NKT
Hp:He class. quantum class. quantum
Two-component MC 3:1 212 101 -2.2173 1.94
One-component MC 3:1 213 100 -2.23 1.94
Theoryb 3:1 222 103 -2.228 2.00
Two-component MC 1:1 167 74 -1.431 1.35
One-component MC 1:1 168 58 -1.395 1.25
Theory 1:1 174 68 -1.405 1.32
Two—-component MC 1:3 130 38 -0.814 0.78
One-component MC 1:3 129 33 -0.801 0.76
Theory 1:3 134 39 -0.809 0.82

d values of the (r, ¢/k, a) parameters for the Hp-He interaction are
(3.30 &, 15.5 K, 13). The pure-component parameters are given in
Table I.

b calculations using the Ross theory.
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One can study the phase separation in these systems using either a
nonreactive method (which does not make use of chemical reactions) or the
reactive method (in which the phase separation is treated as a chemical
reaction problem). The former gives an accurate phase boundary close to
the critical line; however, the method is too complex to apply beyond
binary mixtures. On the other hand, since the second approach is de-
signed for a mixture with an arbitrary number of components, it too has a
shortcoming in that it uses a mathematical algorithm which is not really
designed for computing a phase boundary near the critical line. We will
use the first method to compute the phase boundary of Hp-He mixtures,
and the second method for studying the other systems.

Determination of A Phase Boundary by A Nonreactive Method

To determine the phase pboundary of a binary mixture of species a
(mole fraction x) and b (mole fraction 1-x), we fix pressure P and temp-
erature T and solve for a pair of compositions (x' and x") at which the
excess Gibbs free energy

AG(P,T,x) = G(P,T,x) - xG(P,T,1) - (1-x)G(P,T,0) (27)

has a common tangent. The procedure requires: we first relate G to the
Helmholtz free energy A by a thermodynamic definition, G = A + PV, (V =
volume), and then evaluate P(V,T,x) and A(V,T,x) over a sufficiently
large range of V and x so that the resulting data may be inverted by
interpolation to yield G(P,T,x). The only link between the above thermo-
dynamic procedure and theoretical mixture models (described earlier)
occurs in the evaluation of A(V,T,x) [Eq. (6)] which in turn requires the
information on intermolecular potentials for pure (x= 0 or 1) and
mixtures.

Application to Ho-He Mixtures

It is well known that liquids, such as water and oil, do not mix
well with each other. Less known is the fact that a similar "demixing"
occurs in gas mixtures above their critical temperatures. Since van der
Waals first predicted this so-calied supercritical phase separation, such
phase separations have been found in approximately one hundred binary
mixtures. Recent diamond-anvil cell experiments by van den Bergh,
Schouten, and Trappeniers4a and Loubeyre, Le Toullec, and Pinceaux4d show
that the fluid phase separation in the Hy-He mixture extends to at least
15 GPa and 400 K. These experiments stand out as the highest pressure
experiments on fluid phase separation. At such a high pressure and tem-
perature the molecular interactions are almost totally repulsive. These
data and the earlier data obtained by Streett?9d provide us the most
complete system for testing a theoretical mixture model at high
pressures.

Theoretically, the Hp-He system is important. First, both H and He
have small masses. Hence, its EOS should .exhibit appreciable quantum
corrections, providing a practical check to the effective mass formula,
Eq. (27). Second, we have already described how a large many-body effect
in Hp molecules gives rise to the soft-repulsion in the Hy-H, effective
potential. It is an ideal system to test the mixing rule, Eq. (22), for
the stiffness parameter «.

There is a large body of experimental and theoretical information on
pure solid and liquid H, and He. As a consequence, we now have a
reasonably good understanding on the physical behavior of the individual
components. The experimentally reported static measurements include the
saolid and fluid isotherms. Shock wave data are also available for both
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Hp and He. (Reference 27 gives references on experimental works.)

In our work we use the exp-6 parameters for the Hp-Hp potential
which can accurately represent single and double shock data of 1liquid
Hp and Dy to 90 GPa or to 7000 K. The same parameters also describe
experimental static compression data reasonably well. The exp-6 He-He
parameters in Table I are taken from Young et al.'s work .30 These
parameters can accurately reprodiuce experimental (P,V) and melting-curve
data up to 12 GPa.

In contrast, practically no information is available on the exp-6
parameters for the Hpy-He interaction in condensed phases. In Fig. 5a the
theoretical so]ub111ty lines have been matched to Streett's experimental
data by choosing (rij.He. €H2He/4r ay-He) = (3.28 R, 17.3 K, 12.54).

Thesa vaiues are 2.5% above, 13% bteldw, and 4% above the csrrasponding
Lorentz-Berthelot values, respectively. At fixed temperatures the
demixing region corresponds to a region in which the pressure and
composition 1ie above the solubility line in Fig. 5(a). Both theoretical
and experimental solubility lines agree satisfactorily at T > 61.5 K.
Disagreement below 61.5 K is due to higher-order quantum corrections
that were not considered in the calculation. 1In Fig. 5(a) dash-dotted
1ines, indicating theoretical freezing lines along the isotherms, are
approximated by assuming that the hard-sphere packing fraction n is
constant (0.44) along the freezing lines. This empirical rule gives
usually relaible melting lines for other potentials. Intersections of
the freezing lines and the solubility lines in Fig. 5(a) define the
pressures (dashed lines) at which the Hy-rich solid phase coexists in
equilibrium with the Hp-rich and He-rich fluid phases. The
corresponding experimental data are marked by solid circles.

The above calculation gives information on the exp-6 parameters (r*,
¢, a) for the Hp-He interaction. A cursory investigation of the
sensitivity of the solubility lines to the variation of these parameters
1nd1cates that the solubility lines are most sensitive to the change in
rH He and are least affected by the change in ey,y The change of

H-He/k over 14-17 K, as predicted by various thgoret1cal and experi-
ﬁta] studies, did not alter the solubility lines appreciably, while an
1ncrease of ri,He by 0.02 & lowered the pressure of the 100 K solubility
line by about ?50 MPa at xyp = 50%, without "tilting" the solubility line
in favor of the Hp- or He-rich fluid phase. Similar effects may be
produced by increasing ay In this case, however, the solubility
Tine is lowered more at 1gwer X2 values.

We have extended the above calculations (< 1 GPa) to 7 GPa using
the same exp-6 parameters. Fiqure 5(b) compares the computed phase
boundaries at 200 K and 300 K with van den Bergh et al.'s diamond-anvil
cell data.?3 wWe note that the agreement between the two is satis-
factory except near the critical points. It will be possible to match
the experimental data by further “fine-tuning" the Hy-He interaction
parameters. Near the critical line [loci-of the minima of the solubility
isotherms in Figs. 5(a) and 5(b)], however, the Gibbs free energies of
the two fluid phases are almost equal. Hence, in Fig. 5(b) the computed
phase boundaries near the critical points contain some uncertainties.
Therefore, the fine-tuning procedure requires a very precise method of
evaluating the Gibbs free energy. Figure 6 shows the experimental and
theoretical critical lines for the Hy-He system. The agreement
between the two is good.

The most significant result of the above study is that the Hp-He
system exhibits a supercritical fluid phase separation at the (T,P)
range of van der Bergh et al.'s experiment, where the molecular
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interactions are almost totally repulsive. The phase separation may
originate from the way molecules with different sizes can pack most
efficiently. This is supported by our calculation, but they have been
neglected in many available theoretical models. The factor most
respons1b1e for the fluid phase separation is the repulsive parameter
"HzHe In the case of hard-sphere mixtures with the unlike hard-sphere

16
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diameter given by
dap = % (daa + dpp)(1 + 0), (28)

Melnyk and Sanford?! have made a molecular dynamic simulation and other
theoretical calculations. Their results indicate a fluid phase separa-
tion only if @ > 0. But the transition occurs in the metastable fluid
range if @ is too small or if @ = 0. The latter case has been
investigated by Lebowitz and his coworkers32 and Alder.33 However, as
Lebowitz and Zomick noted, for real fluids at high pressures there is no
compelling reason that © should be zero.

Determination of A Phase Boundary By A Reactive Method

We will describe below an alternative and more general way to
compute a phase boundary for a multicomponent mixture. For this
purpose, it is convenient to treat a single chemical compound, if it
occurs in more than one phase, as different species. Thus, a phase
change, for example, is treated as a chemical reaction involving two

distinct species.

Briefly, we set up R independent chemical reactions involving
species A; (=1, 2, ..., L),

v]jA] + uszz + u3jA3 + ... + ug_jAg_ =0, (29)
where j =1, 2,..., R, and [vij} is a set of stoichiometric coefficients

(negative signs for reactants and positive signs for products). If we
define \j (the so-called extent-of-reaction variable) as the fraction of



reaction j that is completed, the total change in the number of mole
n; of species Ay for all reactions is

R
ng = nig + I vijrj, 1=1,2,...,0. (30)
3=

Initially, all xj's are zero; they are urity at the final state.

Since {ny} and [kj} are related by Eq. (30), the Gibbs
free energy which is a function of P, T, and {nj} can also be
represented as a function of P, T, and {x5}. Thus, the
minimization of G(P,T,[kj})) at fixed P and T implies

%
aG/an ='Z]Vijvi = 0, j=1,2,...,R. (31)
1=

In Eq. (31) uj = 36/3ny represents the chemical potential of species i.
We compute ui from the mixture EOS described in the preceding sections.
The resulting expression for uj is a complex function of P, T, and
{ny}, given in Ref. 8.

The above mathematical formulation is programmed into the chemical
equilibrium (CHEQ) code. The CHEQ code solves for {nj} using Egs. (30)
and (31) with an additional constraint (the stoichiometric condition),
conserving the total number of elements before and after the chemical
reactions. We use the resulting G to computes thermodynamic quantities
by taking appropriate numerical derivatives of G.

Application to The Xe-He System

Reactions (29) for the supercritical phase separation between a
Xe-rich (f1) phase and a He-rich (f2) phase are given by

Reaction 1: Xe(f1) - Xe(f2) 0, (32a)

0. (32b)

Reaction 2: He(f1) - He(f2)

The extents of these reactions are Ay and Ay; hence, Eq. (30) gives the
resulting changes in the mole numbers,

n(Xe,f1) = ng(Xe,f1) + A7, (33a)
n(Xe,f2) = ng(Xe,f2) - \q, (33b)
n(He,f1) = ng(He,f1) + %p, (33c¢)
n(He,f2) = ng(He,f2) - Ay, (33d)

The chemical equilibrium conditions Eq. (31) imply

u(Xxe,f1) u(Xe,f2), (34a)

u(He,f1) = u(He,f2). (34b)

The CHEQ code solves for the solution {nj} which satisfies Eqs. (33)

and (34). In Fig. 7 the resulting theoretical solubility lines of the
Xe-He system34 are compared with the experimental data of de Swaan
Arons and Diepen's data.35 The calculations are based on Tike-pair
exp-6 parameters derived from the corresponding-states scaling

18
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Fig. 7. Solubility lines of the Xe-He system (Ref. 34). Comparison
between theory and experiment (Ref. 35).

relations® and the unlike-pair eij values from an empirical

rule.36 Since the main purpose of the calculations was on testing the
CHEQ code, no attempt was made to "fine-tune" the exp-6 parameters.
Therefore, it is encouraging to see reasonable agreement between theory
and experiment. Near the critical region, however, the theoretical
results tend to become "stiffer". This unphysical behavior is connected
with our use of the free eneirgy expression, tkgq. (7), which becomes
nonconvex with respect to variation of nj's.

In this connection, it is worthwhile to briefly mention the
procedure for determining the phase separation boundaries by the CHEQ
code. We fix T and initial values for {nj}. We then start our
calculation at a high P, where a mixed-fluid phase has a much lower
Gibbs free energy G than that of the homogeneous fluid phase so that the
CHEQ code can find the phase boundary without difficulty. We determine
the phase boundaries at successively lower pressures until the calcula-
tion predicts a homogeneous fluid phase. Because we are using the same
analytic G to describe different fluid phases by analytic continuation,
the observed homogeneous fluid phase may be thermodynamically metastable
or stable. That is, when plotted against the composition, G shows a
wiggly shape with its curvature changing from + to - to +. That portion
of G having the positive (convex) curvature is thermodynamically stable
or metastable, while the negative (nonconvex) curvature represents a
thermodynamically unstable region. For complex mixtures for which the
CHEQ code is designed, the composition variables are multi-dimensional
and there is no simple procedure to solve for {nj}. The CHEQ code
makes use of the convexity of G. Within or near a fluid phase boundary,
this procedure can lead to a local minimum (representing a metastable
homogeneous phase). We can mostly avoid such a possibility by repeating
the calculation using different initial compositions. 1If none of them
predicts the mixed phase, we consider the (P,T) state to be in a homo-
geneous fluid phase. Otherwise, it is in the mixed phase region. We
have tested the above procedure against calculations using the double-
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tangent construction for binary mixtures. The present procedure works
for most cases except near the critical point of the solubility
isotherms, where the free energy difference is very small and is
insensitive to composition.

Fluid Phase Separations in N», H»0, and CO» Mixtures

Since Np, €Oy, and HpQ are major detonation products of HE, we
investigated the phase behavior of their mixtures. Figure 8(a) shows
that, at (P,T) states relevant to HE detonation, the Ny-Hp0 mixture
can separate into two fluid phases, one rich in N> and the other rich
in H20.37 This result implies that a proper description of detonation
behavior needs to deal with the supercritical fluid phase separation in
the N;-Hp0 system. 1In contrast, the fluid phase separations in the

N2 + HZO
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Fig. 8. Theoretical solubility lines of three binary systems (Ref. 37):
(a) N2-H20, (b) CO3- Hzo and (c) Np-COp. They are based on the like-
pa1r exp-6 parameters in Table I and the un11ke -pair parameters:

o = 3.575 &, rCO H,0 = 3.615 &, and rN,co, = 4.13 A. Dashed or
brgkgn portions of the %sotherms are theore% 311y unreliable portions.
See the text.



C0p-H,0 and Np-COp systems [Figs. 8(b) and 8(c)] occur at pressures
above 60 GPa for the C0p-Hp0 mixture and above 80 GPa for the CO7-Np
mixture. These ranges probably lie outside the stability range of the
fluid phases for these mixtures. The present procedure works for most
cases except near the bottom portions (i.e., P < 25 GPa) of the low-T
solubility isotherms, where the free energy difference is very small and
is insensitive to composition. Those portions of the solubility iso-
therms, where the CHEQ code is trapped in the metastable homogenzous
phase, are either ieft out or indicated by dashed lines in rig. 8.

Experimental data on the Np-Hp0 system38 and the C0;-H,0

system39 are limited below 0.4 GPa and temperatures below 700 K. These
data lie well below the temperature range (> 1300 K) where our model
[Eqs. (4)] of water is applicable. Nevertheless, the exparimental data
show a large (T,P) region of incomplete miscibility for the Ny -H:;0
system and an equally large region of complete miscibility for the
C0,-Hp0 system. This is consistent with the results discussed above.

Figure 9 shows a typical solubility diagram for a ternary system of
N», COp, and Hp0 at 33 GPa and 0.35 eV (1 eV = 11604 K), a state near
the theoretical Chapman-Jouguet (C-J) point of PBX-9404 (open circle).
We note that COp tends to make N, more soluble in water, in much the
same way that soap makes oil and water more miscible. The shaded area
represents the fluid phase separation, otbtained by using Eq. (5) for
the unlike-pair exp-6 parameters. However, the uncertainties in these
values are about 5%. Moreover, small changes in these parameters can
have large effects on the solubility boundary. For example, we can
expand the fluid-phase separation region (area under dotted line) far
beyond the C-J point simply by changing the r* parameters for
N»-H»0 and Hp0-C0p by +3% and -3.5%, respectively.

co
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Fig. 9. Theoretical ternary phase diagram (Ref. 37) for the Nz, Hp0, and
COp system at 4062 K and 35 GPa that lies close to the theoretical C-J
point (open circle) of PBX-9404. See the text for further discusssion.
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MULTICOMPONENT SYSTEMS

We briefly describe some multiphase multicomponent applications of
the CHEQ code.

Explosives

We assume that the detonatiocn products are in a gaseous mixture and
ona solid phase, i.e.,

Gas phase A: Np, Hp0, COp, CO, CHgq, NH3, Hz, 02, NO
Solid phase: diamond or graphite.

When we tried this procedure for PETN (CgHaN3z0y5) using empirical
EQS for the sc'id productis, our calculated C£-J point [solid circie in
Fig. 1C(a)] agreed well with existing experimental data on detonation
velocity. When we used the same procedure with PBX-9404 [a plastically
bonded composite explosive whose main constituent is HMX (C4HgNg0Og)], the
lack of agreement was striking [Fig. 10(b)]. For example, at the C-J
point [the minimum point in Fig. 10(b)], the theoretical detonation
velocity is 9.25 km/s whereas the experimental detonation velocity is

8.78 km/s.

If we compare the computed C-J data for PETN and PBX-9404, we find
that, at their respective C-J points, PBX-9404 is cooler than PETN by
540 K but has a higher pressure by 5.4 GPa. This combination of high
pressure and low temperature suggested the supercritical phase separation
in Np, H0, and COp discussed earlier might affect the detonation
behavior, since the three chemical species make up 95% or more of the
gaseous detonation products in PBX-9404. Therefore, recalculated the
Hugoniot of PBX-9404 taking the possibility of phase separation into
account by introducing the second gaseous phase (B):

fa) PETN (b) PBX-9404
NP——:I ! 10.6
itrogen-phase
96 — s:gavalpuon :# 1
T Kineke i #
® C-J point (theory) 102
2 Zr C-J point (expenment) ﬂ J
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Fig. 10. Shock velocity vs pressure for (a) PETN and (b) PBX-9404,
calculated with the CHEQ code and compared with experimental data of
Green et al. and Kineke and West. (References on the experimental data
are given in Ref. 37.) The calculations assume a single gas phase plus

solid carbon.
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Gas phase B: Nz, H20.
The "three-phase" CHEQ result in Fig. 11 admits phase B only if its
presence minimizes the Gibbs free energy. Theory and experiment agree
to about 60 GPa. Further experiment would be needed to substantiate

this interesting theoretical prediction.

Planetary Interiors

Recently, Nellis et gl.40 have carried out shock pressure
measurements on a mixture of Hp0, NH3, and C3HgO (isopropanol). They
chose the mole fractions, (Hp0:NH3:C3HgO) = (0.71:0.14:0.15), so that
(0:C) and (0:N) ratios match close to those of cosmological abundances,
and an (H:0) ratio similar to that of an "ice"-gas mixture in a proposed
model of Uranus.4] High temperatures and pressures created by the shock
wave experiment allow the dissociation products from this "synthetic

Uranus" to achieve a (P,T) state relevant to an interior point of Uranus.

Hence, a theoretical analysis of the shock experiment yields information
relevant to the interior composition of Uranus.

Our analysis40 of the shock experiment with the CHEQ code considers
the same species (nine gaseous species and two solids) as in the
explosive case. Figure 11 compares two theoretical Hugoniots with the

experimental data. The solid and dashed curves correspond, respectively,

Z3



T 1 ] T T
Fluld (H,0 + NH, + CH))
80 n Solid (diamond) T
< 60 .
o
o Fiuid (H,0 + NH, + CH,)
o | Fluld (CH,)
s .
a a0l Solid (dlamond)
2 Fluld (H,0 + NH,)
Fluld (CH,) 1
| Sclid (dlamond)
20k &
Fluld (H,0 + NH,) R
i HUM(CH) SS
No solid —
0 1 1 1 | 1
10 12 14 16 18

Volume (cm?/mol)

Fig. 12. Hugoniot of synthetic Uranus (Ref. 40). Pluses are experi-
mental data; solid and dash lines represent calculations with and
without fluid phase separations, respectively.

to calculations with and without allowing a fluid phase separation.
Differences between the two are small, but the case with fluid phase sep-
aration agrees better with experiment. At pressures below 20 GPa and
shock temperatures near 2000 K, which is relevant to an interior point

of Uranus, the calculation suggests that CHs molecules prefer to

separate out from the (Ho0-NH3)-rich fluid phase. Since the two
coexisting fluid phases have different densities, the gravity of Uranus
will segregate the two phases. However, gravity may or may not produce

a layered structure (of a type proposed by Hubbard and MacFarlane).4

At higher shock pressures in Fig. 12, the shock heating reduces the
amount of "demixing" of the two f1uid phases. At pressures above 50 GPa,
the calculation shows no fluid phase separation, and the computed results
start to deviate from experiment. The chemical equilibrium calculation
does not include monatomic and ionic species, which may occur at high
shock pressures and temperatures. Therefore, their omission could
explain the observed deviation.

SUMMARY

Both real and computer experiments have produced a large body of
thermodynamic data on mixtures at high densities. These data provided
an opportunity to construct a high-pressure and high-temperature mixture
model. One requirement placed in the mixture model is that it should be
applicable not simply to binary systems but also to systems with a large
number (=10) of chemical species. Such a model is needed, for example,
to describe the detonation behavior of condensed explosives and the
interior structures of the outer planets. Another requirement is that
the mixture model uses fundamental theories of statistical mechanics and
intermolecular forces.

For this purpose, we adapted the most practical approach, i.e., an
"effective" one-component model, which replaces all molecular inter-
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actions in the mixture by a hypothetical one-component potential. The
best known effective one-component model, i.e., the one-fluid van der
Waals (vdWi1f) model is not suitable for the present purpose, since it
uses the same stiffness a of repulsion for all molecular interactions,

an assumption which is not valid at high densities. High-density
thermodynamic properties depend sensitively on «'s of individual inter-
molecular repulsions. To circumvent this difficulty, we developed an
improved vdiWif model that uses a mixing formula for e. For mixtures

with a light element neading quanium correction, we obtained an analogous
effective one-component formula for mass. Monte Carlo simulations on
mixture systems were carried out to verify that the improved vdWilf model
is as accurate as the conventional vdWlf model but it can be used over an
extended density and temperature range where the conventional model is
nhysicallv inappropriate. Scme theoretical justifications for the one-
fiuid approximations have been described.

The solubility of Hp-He mixtures was chosen as the first applica-
tion of the mixture model. The theoretical solubility lines are computed
by solving for mole fractions at which the Gibbs free energy of the
mixtures has a common tangent. The computed results are compared against
the diamond anvil cell data to 8 GPa. For the second example, i.e.,
solubility diagrams of the He-Xe system, we used an alternative but more
general approach that is applicable to any multicomponent system. This
approach uses a computer code (CHEQ) which solves for the composition of
chemical species under the Gibbs equilibrium conditions. The computed
results are compared with experimental data. Next we examined super-
critical fluid phase separations in mixtures of polar and nonpolar
molecules. Here, we approximated an average electrostatic attraction in
polar molecules by a temperature-dependent attractive well-depth.

Results for Np-Hy0 and COp-Hy0 mixtures show that the former system
exhibits a Timited solubility at high pressures and temperatures, but the
latter does not. These results are consistent with low pressure experi-
mental data. Next, we considered the supercritical fluid phase
separation in a ternary system of Np, Hy0, and CO,. We find that COp
molecules tend to make Ny more soluble in water, in much the same way
that soap makes oil and water more miscible.

We then shifted our attention to more practical problems involving
chemical reactions: the detonation behavior of condensed explosives and a
prediction of chemical species at the interior of the giant planets.
Experimental data on explosives are available over a wide range of
pressures (1-100 GPa) and temperatures (1000-5000 K). We have analyzed
PBX-9404 as a typical explosive. The calculation predicts Ny molecules
prefer to separate out from the remaining fluid mixture. Introduction of
such a phase separation gives better agreement with experimental shock
wave data of PBX-9404. For a planetary application, we used the CHEQ
code to interpret a recent Livermore gas-gun experiment of "synthetic"
Uranus. In this case, the calculation predicts a fluid-fluid phase
separation between a CHa-rich fluid and a (H30-NH3)-rich fluid at a
pressure and temperature condition relevant to an interior point of
Uranus.
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